Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Article in English | MEDLINE | ID: covidwho-20243008

ABSTRACT

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Subject(s)
COVID-19 , Methyltransferases , Humans , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics , Exoribonucleases
2.
J Med Virol ; 95(6): e28881, 2023 06.
Article in English | MEDLINE | ID: covidwho-20235484

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented threat to human health since late 2019. Notably, the progression of the disease is associated with impaired antiviral interferon (IFN) responses. Although multiple viral proteins were identified as potential IFN antagonists, the underlying molecular mechanisms remain to be fully elucidated. In this study, we firstly demonstrate that SARS-CoV-2 NSP13 protein robustly antagonizes IFN response induced by the constitutively active form of transcription factor IRF3 (IRF3/5D). This induction of IFN response by IRF3/5D is independent of the upstream kinase, TBK1, a previously reported NSP13 target, thus indicating that NSP13 can act at the level of IRF3 to antagonize IFN production. Consistently, NSP13 exhibits a specific, TBK1-independent interaction with IRF3, which, moreover, is much stronger than that of NSP13 with TBK1. Furthermore, the NSP13-IRF3 interaction was shown to occur between the NSP13 1B domain and IRF3 IRF association domain (IAD). In agreement with the strong targeting of IRF3 by NSP13, we then found that NSP13 blocks IRF3-directed signal transduction and antiviral gene expression, counteracting IRF3-driven anti-SARS-CoV-2 activity. These data suggest that IRF3 is likely to be a major target of NSP13 in antagonizing antiviral IFN responses and provide new insights into the SARS-CoV-2-host interactions that lead to viral immune evasion.


Subject(s)
COVID-19 , Interferon Regulatory Factor-3 , Viral Nonstructural Proteins , Humans , COVID-19/immunology , Immune Evasion , Interferon Regulatory Factor-3/genetics , Interferons , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
3.
Biochem Biophys Res Commun ; 668: 35-41, 2023 Aug 06.
Article in English | MEDLINE | ID: covidwho-2327275

ABSTRACT

The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , DNA Helicases/chemistry , DNA/chemistry , Virus Replication , Viral Nonstructural Proteins/genetics
4.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-2295624

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Subject(s)
SARS-CoV-2 , Humans , Allosteric Regulation , Amino Acid Sequence , COVID-19 , Cryoelectron Microscopy , Endoribonucleases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry
5.
Vet Res ; 54(1): 27, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2287297

ABSTRACT

Porcine epidemic diarrhoea (PED) caused by porcine epidemic diarrhoea virus (PEDV) has led to significant economic losses in the swine industry worldwide. Histone Cluster 2, H2BE (HIST2H2BE), the main protein component in chromatin, has been proposed to play a key role in apoptosis. However, the relationship between H2BE and PEDV remains unclear. In this study, H2BE was shown to bind and interact with PEDV nonstructural protein 9 (Nsp9) via immunoprecipitation-mass spectrometry (IP-MS). Next, we verified the interaction of Nsp9 with H2BE by immunoprecipitation and immunofluorescence. H2BE colocalized with Nsp9 in the cytoplasm and nuclei. PEDV Nsp9 upregulated the expression of H2BE by inhibiting the expression of IRX1. We demonstrated that overexpression of H2BE significantly promoted PEDV replication, whereas knockdown of H2BE by small interfering RNA (siRNA) inhibited PEDV replication. Overexpression of H2BE led to significantly inhibited GRP78 expression, phosphorylated PERK (p-PERK), phosphorylated eIF2 (p-eIF2), phosphorylated IRE1 (p-IRE1), and phosphorylated JNK (p-JNK); negatively regulated CHOP and Bax expression and caspase-9 and caspase-3 cleavage; and promoted Bcl-2 production. Knocking down H2BE exerted the opposite effects. Furthermore, we found that after deletion of amino acids 1-28, H2BE did not promote PEDV replication. In conclusion, these studies revealed the mechanism by which H2BE is associated with ER stress-mediated apoptosis to regulate PEDV replication. Nsp9 upregulates H2BE. H2BE plays a role in inhibiting apoptosis and thus facilitating viral replication, which depends on the N-terminal region of H2BE (amino acids 1-28). These findings provide a reference for host-PEDV interactions and offer the possibility for developing strategies for PEDV decontamination and prevention.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Eukaryotic Initiation Factor-2 , Viral Nonstructural Proteins/genetics , Virus Replication , Protein Serine-Threonine Kinases , Amino Acids , Endoplasmic Reticulum Stress , Apoptosis , Coronavirus Infections/veterinary , Vero Cells
6.
Sci Rep ; 13(1): 2890, 2023 02 18.
Article in English | MEDLINE | ID: covidwho-2268916

ABSTRACT

Replication of the coronavirus genome starts with the formation of viral RNA-containing double-membrane vesicles (DMV) following viral entry into the host cell. The multi-domain nonstructural protein 3 (nsp3) is the largest protein encoded by the known coronavirus genome and serves as a central component of the viral replication and transcription machinery. Previous studies demonstrated that the highly-conserved C-terminal region of nsp3 is essential for subcellular membrane rearrangement, yet the underlying mechanisms remain elusive. Here we report the crystal structure of the CoV-Y domain, the most C-terminal domain of the SARS-CoV-2 nsp3, at 2.4 Å-resolution. CoV-Y adopts a previously uncharacterized V-shaped fold featuring three distinct subdomains. Sequence alignment and structure prediction suggest that this fold is likely shared by the CoV-Y domains from closely related nsp3 homologs. NMR-based fragment screening combined with molecular docking identifies surface cavities in CoV-Y for interaction with potential ligands and other nsps. These studies provide the first structural view on a complete nsp3 CoV-Y domain, and the molecular framework for understanding the architecture, assembly and function of the nsp3 C-terminal domains in coronavirus replication. Our work illuminates nsp3 as a potential target for therapeutic interventions to aid in the on-going battle against the COVID-19 pandemic and diseases caused by other coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Pandemics , Protein Domains , Viral Nonstructural Proteins/genetics
7.
Appl Microbiol Biotechnol ; 107(7-8): 2451-2468, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2254613

ABSTRACT

Maximizing the expression level of therapeutic proteins in cells is the general goal for DNA/mRNA therapies. It is particularly challenging to achieve efficient protein expression in the cellular contexts with inhibited translation machineries, such as in the presence of cellular Nonstructural protein 1 (Nsp1) of coronaviruses (CoVs) that has been reported to inhibit overall protein synthesis of host genes and exogenously delivered mRNAs/DNAs. In this study, we thoroughly examined the sequence and structure contexts of viral and non-viral 5'UTRs that determine the protein expression levels of exogenously delivered DNAs and mRNAs in cells expressing SARS-CoV-2 Nsp1. It was found that high 5'-proximal A/U content promotes an escape from Nsp1-directed inhibition of protein synthesis and results in selective protein expression. Furthermore, 5'-proximal Cs were found to significantly enhance the protein expression in an Nsp1-dependent manner, while Gs located at a specific window close to the 5'-end counteract such enhancement. The distinct protein expression levels resulted from different 5'UTRs were found correlated to Nsp1-induced mRNA degradations. These findings ultimately enabled rational designs for optimized 5'UTRs that lead to strong expression of exogenous proteins regardless of the translationally repressive Nsp1. On the other hand, we have also identified several 5'-proximal sequences derived from host genes that are capable of mediating the escapes. These results provided novel perspectives to the optimizations of 5'UTRs for DNA/mRNA therapies and/or vaccinations, as well as shedding light on the potential host escapees from Nsp1-directed translational shutoffs. KEY POINTS: • The 5'-proximal SL1 and 5a/b derived from SARS-CoV-2 genomic RNA promote exogenous protein synthesis in cells expressing Nsp1 comparing with non-specific 5'UTRs. • Specific 5'-proximal sequence contexts are the key determinants of the escapes from Nsp1-directed translational repression and thereby enhance protein expressions. • Systematic mutagenesis identified optimized 5'UTRs that strongly enhance protein expression and promote resistance to Nsp1-induced translational repression and RNA degradation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 5' Untranslated Regions , SARS-CoV-2/genetics , RNA, Messenger/metabolism , Cell Line , Viral Nonstructural Proteins/genetics , Protein Biosynthesis
8.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2242222

ABSTRACT

During coronavirus infection, three non-structural proteins, nsp3, nsp4, and nsp6, are of great importance as they induce the formation of double-membrane vesicles where the replication and transcription of viral gRNA takes place, and the interaction of nsp3 and nsp4 lumenal regions triggers membrane pairing. However, their structural states are not well-understood. We investigated the interactions between nsp3 and nsp4 by predicting the structures of their lumenal regions individually and in complex using AlphaFold2 as implemented in ColabFold. The ColabFold prediction accuracy of the nsp3-nsp4 complex was increased compared to nsp3 alone and nsp4 alone. All cysteine residues in both lumenal regions were modelled to be involved in intramolecular disulphide bonds. A linker region in the nsp4 lumenal region emerged as crucial for the interaction, transitioning to a structured state when predicted in complex. The key interactions modelled between nsp3 and nsp4 appeared stable when the transmembrane regions of nsp3 and nsp4 were added to the modelling either alone or together. While molecular dynamics simulations (MD) demonstrated that the proposed model of the nsp3 lumenal region on its own is not stable, key interactions between nsp and nsp4 in the proposed complex model appeared stable after MD. Together, these observations suggest that the interaction is robust to different modelling conditions. Understanding the functional importance of the nsp4 linker region may have implications for the targeting of double membrane vesicle formation in controlling coronavirus infection.


Subject(s)
SARS-CoV-2 , Viral Nonstructural Proteins , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Protein Conformation
9.
Signal Transduct Target Ther ; 7(1): 400, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2230613

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has devastated global health. Identifying key host factors essential for SARS-CoV-2 RNA replication is expected to unravel cellular targets for the development of broad-spectrum antiviral drugs which have been quested for the preparedness of future viral outbreaks. Here, we have identified host proteins that associate with nonstructural protein 12 (nsp12), the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 using a mass spectrometry (MS)-based proteomic approach. Among the candidate factors, CDK2 (Cyclin-dependent kinase 2), a member of cyclin-dependent kinases, interacts with nsp12 and causes its phosphorylation at T20, thus facilitating the assembly of the RdRp complex consisting of nsp12, nsp7 and nsp8 and promoting efficient synthesis of viral RNA. The crucial role of CDK2 in viral RdRp function is further supported by our observation that CDK2 inhibitors potently impair viral RNA synthesis and SARS-CoV-2 infection. Taken together, we have discovered CDK2 as a key host factor of SARS-CoV-2 RdRp complex, thus serving a promising target for the development of SARS-CoV-2 RdRp inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cyclin-Dependent Kinase 2/genetics , Proteomics , COVID-19/genetics , Viral Nonstructural Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism
10.
J Biol Chem ; 299(3): 102980, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220926

ABSTRACT

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , Adenosine Triphosphate/metabolism , COVID-19/virology , RNA , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
11.
Sci Rep ; 13(1): 350, 2023 01 07.
Article in English | MEDLINE | ID: covidwho-2186047

ABSTRACT

In recent years, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the cause of the coronavirus disease (COVID-19) global pandemic, and its variants, especially those with higher transmissibility and substantial immune evasion, have highlighted the imperative for developing novel therapeutics as sustainable solutions other than vaccination to combat coronaviruses (CoVs). Beside receptor recognition and virus entry, members of the SARS-CoV-2 replication/transcription complex are promising targets for designing antivirals. Here, the interacting residues that mediate protein-protein interactions (PPIs) of nsp10 with nsp16 and nsp14 were comprehensively analyzed, and the key residues' interaction maps, interaction energies, structural networks, and dynamics were investigated. Nsp10 stimulates both nsp14's exoribonuclease (ExoN) and nsp16's 2'O-methyltransferase (2'O-MTase). Nsp14 ExoN is an RNA proofreading enzyme that supports replication fidelity. Nsp16 2'O-MTase is responsible for the completion of RNA capping to ensure efficient replication and translation and escape from the host cell's innate immune system. The results of the PPIs analysis proposed crucial information with implications for designing SARS-CoV-2 antiviral drugs. Based on the predicted shared protein-protein interfaces of the nsp16-nsp10 and nsp14-nsp10 interactions, a set of dual-target peptide inhibitors was designed. The designed peptides were evaluated by molecular docking, peptide-protein interaction analysis, and free energy calculations, and then further optimized by in silico saturation mutagenesis. Based on the predicted evolutionary conservation of the interacted target residues among CoVs, the designed peptides have the potential to be developed as dual target pan-coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Molecular Docking Simulation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Virus Replication/genetics , Methyltransferases/genetics , Peptides/pharmacology , Antiviral Agents/pharmacology , RNA/pharmacology , Exoribonucleases/genetics , Exoribonucleases/chemistry
12.
J Mol Biol ; 435(5): 167973, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2180734

ABSTRACT

The SARS-CoV-2 coronavirus has caused a global pandemic. Despite the initial success of vaccines at preventing infection, genomic variation has led to the proliferation of variants capable of higher infectivity. Mutations in the SARS-CoV-2 genome are the consequence of replication errors, highlighting the importance of understanding the determinants of SARS-CoV-2 replication fidelity. The RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit for SARS-CoV-2 RNA replication and genome transcription. Here, we report the fidelity of ribonucleotide incorporation by SARS-CoV-2 RdRp (nsp12), along with its co-factors nsp7/nsp8, using steady-state kinetic analysis. Our analysis suggests that in the absence of the proofreading subunit (nsp14), the nsp12/7/8 complex has a surprisingly low base substitution fidelity (10-1-10-3). This is orders of magnitude lower than the fidelity reported for other coronaviruses (10-6-10-7), highlighting the importance of proofreading for faithful SARS-CoV-2 replication. We performed a mutational analysis of all reported SARS-CoV-2 genomes and identified mutations in both nsp12 and nsp14 that appear likely to lower viral replication fidelity through mechanisms that include impairing the nsp14 exonuclease activity or its association with the RdRp. Our observations provide novel insight into the mechanistic basis of replication fidelity in SARS-CoV-2 and the potential effect of nsp12 and nsp14 mutations on replication fidelity, informing the development of future antiviral agents and SARS-CoV-2 vaccines.


Subject(s)
RNA-Dependent RNA Polymerase , Ribonucleotides , SARS-CoV-2 , Virus Replication , Humans , Kinetics , Ribonucleotides/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
13.
Cell Biochem Funct ; 41(1): 98-111, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2148282

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued evolving for survival and adaptation by mutating itself into different variants of concern, including omicron. Several studies and clinical trials found fluvoxamine, an Food and Drug Administration-approved antidepressant drug, to be effective at preventing mild coronavirus disease 2019 (COVID-19) from progressing to severe diseases. However, the mechanism of fluvoxamine's direct antiviral action against COVID-19 is still unknown. Fluvoxamine was docked with 11 SARS-CoV-2 targets and subjected to stability, conformational changes, and binding free energy analyses to explore its mode of action. Of the targets, nonstructural protein 14 (NSP14), main protease (Mpro), and papain-like protease (PLpro) had the best docking scores with fluvoxamine. Consistent with the docking results, it was confirmed by molecular dynamics simulations that the NSP14 N7-MTase ((N7-guanine)-methyltransferase)-fluvoxamine, Mpro-fluvoxamine, and PLpro-fluvoxamine complexes are stable, with the lowest binding free energies of -105.1, -82.7, and - 38.5 kJ/mol, respectively. A number of hotspot residues involved in the interaction were also identified. These include Glu166, Asp187, His41, and Cys145 in Mpro, Gly163 and Arg166 in PLpro, and Glu302, Gly333, and Phe426 in NSP14, which could aid in the development of better antivirals against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Fluvoxamine , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/therapy , Fluvoxamine/chemistry , Fluvoxamine/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Coronavirus 3C Proteases
14.
ACS Synth Biol ; 11(11): 3759-3771, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2106357

ABSTRACT

Essential viral enzymes have been successfully targeted to combat the diseases caused by emerging pathogenic RNA viruses (e.g., viral RNA-dependent RNA polymerase). Because of the conserved nature of such viral enzymes, therapeutics targeting these enzymes have the potential to be repurposed to combat emerging diseases, e.g., remdesivir, which was initially developed as a potential Ebola treatment, then was repurposed for COVID-19. Our efforts described in this study target another essential and highly conserved, but relatively less explored, step in RNA virus translation and replication, i.e., capping of the viral RNA genome. The viral genome cap structure disguises the genome of most RNA viruses to resemble the mRNA cap structure of their host and is essential for viral translation, propagation, and immune evasion. Here, we developed a synthetic, phenotypic yeast-based complementation platform (YeRC0M) for molecular characterization and targeting of SARS-CoV-2 genome-encoded RNA cap-0 (guanine-N7)-methyltransferase (N7-MTase) enzyme (nsp14). In YeRC0M, the lack of yeast mRNA capping N7-MTase in yeast, which is an essential gene in yeast, is complemented by the expression of functional viral N7-MTase or its variants. Using YeRC0M, we first identified important protein domains and amino acid residues that are essential for SARS-CoV-2 nsp14 N7-MTase activity. We also expanded YeRC0M to include key nsp14 variants observed in emerging variants of SARS-CoV-2 (e.g., delta variant of SARS-CoV-2 encodes nsp14 A394V and nsp14 P46L). We also combined YeRC0M with directed evolution to identify attenuation mutations in SARS-CoV-2 nsp14. Because of the high sequence similarity of nsp14 in emerging coronaviruses, these observations could have implications on live attenuated vaccine development strategies. These data taken together reveal key domains in SARS-CoV-2 nsp14 that can be targeted for therapeutic strategies. We also anticipate that these readily tractable phenotypic platforms can also be used for the identification of inhibitors of viral RNA capping enzymes as antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Saccharomyces cerevisiae/genetics , Methyltransferases/metabolism , RNA, Messenger
15.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-2050570

ABSTRACT

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Subject(s)
COVID-19 Drug Treatment , Methyltransferases , Adenosine/pharmacology , Antiviral Agents/pharmacology , Azides , Exoribonucleases/chemistry , Exoribonucleases/genetics , Guanine , Humans , Nucleosides/pharmacology , RNA Caps , RNA, Viral/genetics , SARS-CoV-2 , Sulfonamides/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
16.
Drug Dev Res ; 83(7): 1623-1640, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1999851

ABSTRACT

The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Pentacyclic Triterpenes , Humans , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Interleukin-6 , Molecular Docking Simulation , Pentacyclic Triterpenes/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
17.
J Mol Biol ; 434(20): 167796, 2022 10 30.
Article in English | MEDLINE | ID: covidwho-1996375

ABSTRACT

Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.


Subject(s)
COVID-19 , Endoribonucleases , SARS-CoV-2 , Uridylate-Specific Endoribonucleases , Viral Nonstructural Proteins , COVID-19/virology , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Recombinant Proteins/chemistry , SARS-CoV-2/enzymology , Uridylate-Specific Endoribonucleases/chemistry , Uridylate-Specific Endoribonucleases/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
18.
J Virol ; 96(16): e0084122, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973794

ABSTRACT

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Subject(s)
Exoribonucleases , Genetic Fitness , Murine hepatitis virus , Proteolysis , RNA, Viral , Viral Nonstructural Proteins , Viral Replicase Complex Proteins , Animals , Exoribonucleases/genetics , Exoribonucleases/metabolism , Mice , Murine hepatitis virus/enzymology , Murine hepatitis virus/genetics , Murine hepatitis virus/growth & development , Murine hepatitis virus/physiology , Mutation , Polyproteins/chemistry , Polyproteins/genetics , Polyproteins/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Recombination, Genetic , Transcription, Genetic , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication
19.
Sci Rep ; 12(1): 13337, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1972665

ABSTRACT

Researchers are focused on discovering compounds that can interfere with the COVID-19 life cycle. One of the important non-structural proteins is endoribonuclease since it is responsible for processing viral RNA to evade detection of the host defense system. This work investigates a hierarchical structure-based virtual screening approach targeting NSP15. Different filtering approaches to predict the interactions of the compounds have been included in this study. Using a deep learning technique, we screened 823,821 compounds from five different databases (ZINC15, NCI, Drug Bank, Maybridge, and NCI Diversity set III). Subsequently, two docking protocols (extra precision and induced fit) were used to assess the binding affinity of the compounds, followed by molecular dynamic simulation supported by the MM-GBSA free binding energy. Interestingly, one compound (ZINC000104379474) from the ZINC15 database has been found to have a good binding affinity of - 7.68 kcal/Mol. The VERO-E6 cell line was used to investigate its therapeutic effect in vitro. Half-maximal cytotoxic concentration and Inhibitory concentration 50 were determined to be 0.9 mg/ml and 0.01 mg/ml, respectively; therefore, the selectivity index is 90. In conclusion, ZINC000104379474 was shown to be a good hit for targeting the virus that needs further investigations in vivo to be a drug candidate.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoribonucleases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Viral Nonstructural Proteins/genetics
20.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: covidwho-1960887

ABSTRACT

ß-coronaviruses reshape host cell endomembranes to form double-membrane vesicles (DMVs) for genome replication and transcription. Ectopically expressed viral nonstructural proteins nsp3 and nsp4 interact to zipper and bend the ER for DMV biogenesis. Genome-wide screens revealed the autophagy proteins VMP1 and TMEM41B as important host factors for SARS-CoV-2 infection. Here, we demonstrated that DMV biogenesis, induced by virus infection or expression of nsp3/4, is impaired in the VMP1 KO or TMEM41B KO cells. In VMP1 KO cells, the nsp3/4 complex forms normally, but the zippered ER fails to close into DMVs. In TMEM41B KO cells, the nsp3-nsp4 interaction is reduced and DMV formation is suppressed. Thus, VMP1 and TMEM41B function at different steps during DMV formation. VMP1 was shown to regulate cross-membrane phosphatidylserine (PS) distribution. Inhibiting PS synthesis partially rescues the DMV defects in VMP1 KO cells, suggesting that PS participates in DMV formation. We provide molecular insights into the collaboration of host factors with viral proteins to remodel host organelles.


Subject(s)
COVID-19 , Membrane Proteins , SARS-CoV-2 , Viral Replication Compartments , Autophagy/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Organelles/metabolism , Phosphatidylserines , SARS-CoV-2/physiology , Viral Nonstructural Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL